
NP = P

Maurice Gittens <maurice@gittens.nl>

June 20, 2025

Abstract

A novel equivalence relation for boolean satisfiability formulae is leveraged to outline a straight forward polynomial time algorithm
for the boolean satisfiability problem. This algorithm recursively partitions boolean satisfiability formulae into nine partitions without
backtracking. The master theorem is used to prove that the operations involved are polynomial time. The existence of this algorithm
serves as proof NP = P .

1 Representing formulae in CNF as Matrices

Let F = c0 ·c1... ·c|k| represent the set of boolean satisfiability formulae in conjunctive normal form with variable set V = v0,v1, ...vm
and C = c0,c1, ...cn. Every ci is a disjunction of literals. All boolean satisfiability formulae F in CNF can be represented as matrix as
shown below.

F =

l0,0 l0,1 . . . l0,|C|−1
l1,0 l1,1 . . . l1,|C|−1

...
...

...
...

l|V |−1,0 l|V |−1,1 ... l|V |−1,|C|−1

where:

• F [vi,ci] ∈ {−1,0,1} and F [vi,ci] =−1 when ṽi in clause ci, F [vi,ci] = 1 when v in ci . F [vi,ci] = 0 otherwise.

• |V | represents the number of rows in F

• |C| represents the number of columns in F

As an example the matrix matrix for F = c0 ·c1,c2,c3 = (x+y) ·(x+ ỹ) ·(x̃+ z̃) ·(ỹ+z).,over variables x,y,z corresponding with rows
0,1,2 is presented..

F=
1 1 −1 0
1 −1 0 −1
0 0 −1 1

2 Partitioning boolean satisfiability formulae

To solve the satisfiability problem in polynomial time the search space needs to be efficiently partitioned multi dimensionally. This
section discusses an approach. Boolean satisfiability formula F in CNF represented as a matrix can be partitioned using a pair of
variables called a partitioning key k = (v0,v1) defined as a set of two variables with v1,v2 ,v1 ̸= v2.

1

An example

Consider a specific example F = (v0+v1+ ṽ4) ·(v1+ ṽ2) ·(v0) ·(ṽ1+v2+ ṽ3+ ṽ4) ·(ṽ0+ ṽ2+v4) ·(v3) ·(ṽ1+ ṽ4) ·(ṽ0+v1+ ṽ2) ·(ṽ2+

ṽ3+v4)·(v0+v3) with partitioning key k=(0,4). The matrix representation of F =


1 0 1 0 −1 0 0 −1 0 1
1 1 0 −1 0 0 −1 1 0 0
0 −1 0 1 −1 0 0 −1 −1 0
0 0 0 −1 0 1 0 0 −1 1
−1 0 0 −1 1 0 −1 0 1 0

.

Partitioning F by k yields the partitions f0, f1, f2, f3 defined as

f0 =


0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0

 corresponds with all columns x of F for which F [0,x] = 0 and F [4,x] = 0. Alternatively

f0 = (v1 + ṽ2) · (v3)

f1 =


0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0

 corresponds with all columns x of F for which F [0,x] ̸= 0 and F [4,x] = 0. All F [0,x]

are set to 0. Alternatively f1 = (v1 + ṽ2) · (v3)

f2 =


0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 −1 0 0 0
0 0 0 1 0 0 0 0 −1 0
0 0 0 −1 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0

 corresponds with all columns x of F for which F [0,x] = 0 and F [4,x] ̸= 0. All

F [4,x] are set to 0. Alternatively f2 = (ṽ1 + v2 + ṽ3) · (ṽ1) · (ṽ2 + ṽ3)

f3 =


0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

 corresponds with all columns x of F for which F [0,x] ̸= 0 and F [4,x] ̸= 0. All F [0,x]

and F [4,x] are set to 0. Alternatively f3 = (v1) · ˜(v2)

Do take note that, given the partitioning key k = (0,4) and the partitions f0, f1, f2, f3 it is not possible to reconstruct the formula F.
To correct this deficiency, partitioning is extended.

Improving partitioning; continued example

Partitioning as presented is extended to allow the whole to be reconstructed from the parts. Towards this goal

f3 is further partitioned further into 4 disjunct partitions f30, f31, f32 f33 by leveraging the polarity of partition key variables.
Clauses from f3 are added to

• f30 when both literals of the partitioning key are negative

• f31 when the first partitioning key literal is positive and the second is negative

• f32 when first partitioning key literal is negative and the second is positive

• f33 when both literals from the partitioning key are positive

f2 is further partitioned into 2 disjunct partitions f20, f21 by leveraging the polarity of the second variable of the partitioning
key. Clauses from f2 are

• added to f20 when the polarity of the second variable of the partitioning key is negative

• added to f21 when the polarity of the second variable of the partitioning key is positive

2

f1 is further partitioned into 2 disjunct partitions f10, f11 by leveraging the polarity of the first variable of the partitioning
key. Clauses from f1 are

• added to f10 when the polarity of the first variable of the partitioning key is negative
• added to f11 when the polarity of the first variable of the partitioning key is positive

In the case of the running example, apply these rules yield:

f30 = f33 =


0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

 , f31 =


0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

, f32 =


0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



f20 =


0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 −1 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

, f21 =


0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0



f10 =


0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

, f11 =


0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0


Do take note that the example formula F can be reconstructed the partitioning key k, f0 and the sub partitions f10, f11, f20, f21, f30, f31, f32, f33.

Two variable partitioning in general

In general, given a partitioning key k = (x,y),x ̸= y and formula F =

l0,0 l0,1 . . . l0,|I|−1
l1,0 l1,1 . . . l1,|I|−1

...
...

...
...

l|v|−1,0 l|v|−1,1 ... l|v|−1,|I|−1

The key k partitions F into

formulae f0, f1, f2, f3 where

• f3 represents the subset of columns of F having literals of both the row x and y. All entries of row F [x] and row F [y] are set to
0. Furthermore f3 is sub partitioned into f30, f31, f32 f33 such that clauses from f3 are

– added to f30 when both literals of the partitioning key are negative
– added to f31 when the first partitioning key literal is positive and the 2nd is negative
– added to f32 when first partitioning key literal is negative and the 2nd is positive
– added to f33 when both literals from the partitioning key are positive

• f2 represents the subset of columns of F that includes literals in row x and necessarily includes no literals in row y. All rows
F [x] are set to 0. Furthermore f2 is sub partitioned into f20, f21 such that clauses from f2 are

– added to f20 when the polarity of the second variable of the partitioning key is negative
– added to f21 when the polarity of the second variable of the partitioning key is positive

• f1 represents the subset of columns of F that with no literals of in row x and necessarily includes literals in row y. All F [y] are
set to 0. Furthermore f1 is sub partitioned into f10, f11 such that clauses from f1 are

– added to f10 when the polarity of the first variable of the partitioning key is negative
– added to f11 when the polarity of the first variable of the partitioning key is positive

• f0 represents the subset of columns of F that includes no literals in row x or y.

In summary key, a partitioning key k = (x,y) partitions F into formulae f0, f10, f11, f20, f21, f30, f31, f32, f33. The partitioning scheme
introduced in this section is the singular differentiating enabler of polynomial time solution to the satisfiability problem. Straight
forward implementation of this partitioning scheme are trivially polynomial time. .

3

3 An algorithm proving NP=P

3.1 Pseudo Code of algorithm for the Satisfiability problem

Consider the outline of a function isSatisfiable that takes as input a boolean satisfiability formula in CNF and returns true when the
input formula is satisfiable and false otherwise..

boolean isSatisfiable(CNFFormula f, AssignmentSet ^outputAssignment)
{

if (isSmallFormula(f))

return isSatisfiableSmall(f, outputAssignment);

partitioningKey = get_partitioning_key(f);
AssignmentSet a0, a10, a11, a20, a21, a30, a31, a32, a33;
CNFFormula f0, f10, f11, f20, f21, f30, f31, f32, f33;
f0, f10, f11, f20, f21, f30, f31, f32, f33 = partition(f, partitioningKey);
return

isSatisfiable(f0 , a0) and
isSatisfiable(f10, a10) and
isSatisfiable(f11, a11) and
isSatisfiable(f20, a20) and
isSatisfiable(f21, a21) and
isSatisfiable(f30, a30) and
isSatisfiable(f31, a31) and
isSatisfiable(f32, a32) and
isSatisfiable(f33, a33) and
mergeAssignmentSets(f, partitioningKey, a0, a10, a11, a20, a21,
a30, a31, a32, a33, outputAssignment);

}

The function isSatisfiable recursively partitions the input formula into has nine parts without. It makes use of a few utility functions

isSmallFormula(CNFFormula f) returns true when

• the variable count of f is two or less.

• the clause count of f is two or less

isSatisfiableSmall(CNFFormula f, AssignmentSet ^outputAssignments) assumes that isSmallFormula(f) returns true. It returns

• false when f is not satisfiable. The variable outputAssignments is set to the empty set in this case

• true when f is satisfiable. In this case all assignments satisfying f are assigned to the output variable outputAssignments.

get_partitioning_key(CNFFormula f) given a CNF formula this function returns two available variables to be used for partitioning.
This function is trivially polynomial time.

partition(CNFFormula f, PartitioningKey k) partitions f using k as presented in section 2. This function returns nine partitions of f
as discussed in section 2.

mergeAssignmentSets(...) has 12 parameters. The objective of this function is merge assignment sets of nine partitions of f into a set
of none conflicting assignments if possible. This function returns

• false when it is not possible to merge the assignments into a set of assignments without conflicts. The variable outputAssign-
ments is set to the empty set in this case

• true when it is possible to merge the nine indivitual assignments sets into a single set of assignments that satisfies all nine sub
formulae. In this case all assignments satisfying f are assigned to the output variable outputAssignments.

4

3.2 The time complexity

The function isSatisfiable function presented in the previous section is a classic divide and conquer algorithm to which the master
theorem applies. The master theorem determines the computational complexity of recurrence relations whenever recurrence relations
have the form: T (n) = aT (n

b)+ f (n) where

• n is the input size

• a ≥ 1 is the number of sub problems

• b > 1 is the factor by which the problem size is divided

• f (n) is the cost of partitioning and recombine the sub problems

For the isSatisfiable function both a and b are equal to 9 and f (n) = nk. Applying the master theorem using these parameters yields
a polynomial time complexity for the isSatisfiable function.

4 Conclusion

NP = P is proven by reducing arbitrary boolean satisfiability formulae in the CNF to 2-SATs problems in polynomial time using an
equivalence relation that efficiently partitions CNF formulae. The master theorem is used to prove that the operations involved are
polynomial time.

References

[1] Wikipedia “Master theorem (analysis of algorithms)”.

5

