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Abstract

The object of study in this article are finite constraint systems, a synthesis of ordered finite sets of elements and finite fields.
The first section introduces and defines finite constraint systems and their representation. Next we will show that finite constraint
systems are introduce a new class finite fields. The partitioning of finite constraint systems is the following topic presented. The
next section introduces matching and remainder operations for finite sets. Next the satisfiability problem is expressed using finite
constraint systems and a generalized version of the satisfiability problem will be presented.
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1 The Core Building Block: finite fields as finite functions f:Z→ Z

1.1 Definition

Let F be the set of all finite fields. Each f ∈ F defines functions f:Z→ Z called field functions that map integers x to integers f (x) in
accordance with the following recipe:

l0,0 l0,1 . . . l0,C−1 h0
l1,0 l1,1 . . . l1,C−1 h1

...
...

...
...

...
lR−1,0 lR−1,1 ... lR−1,C−1 hR−1

v0 v1 . . . vC−1 (x, f (x))

• the field matrix ZR−1×C−1
f is a matrix m over a finite field f with R,C respectively representing the number of rows and the

columns in the matrix. A matrix element li, j ∈ f will be called a literal when li, j ̸= 01.

• The number of elements in the field f , will be called the field radix and is denoted |f|, rr = | f |R is called the row radix and
rc = | f |C is called the column radix of m

• vx = Σ
R−1
i=0 li,x| f |i for each column x of m

• hx = Σ
C−1
i=0 lx,i| f |i for each row x of

• x = ∑
C−1
i=0 vir

j
r

• f (x) = ∑
V−1
i=0 hir

j
c

1.2 Finite Constraint Systems

1.2.1 Definition

In section 1.1 all finite fields f were recognized as functions f : Z→ Z. A finite constraint system is defined as a specific mapping
from an a ∈ Z to it’s image f (a).

1.2.2 Example Finite Constraint Systems for the field Z/Z3

This section presents a few examples of mapping of integers to their image using a finite constraint function for Z/Z3. To determine
the image of the integer 4, we recognize that the field radix of Z/Z3 is equal the order of this field which is 3. For the following
examples the row radix and the column radix are 27 = 33 and 81 = 34 respectively.

Z/Z3(4) =

1 0 0 0 1
1 0 0 0 3
0 0 0 0 0
4 0 0 0 (4,244)

Z/Z3(4) = 244 because 4 ·270 = 4 and 1 ·810 +3 ·811 = 244 .

Similarly Z/Z3(310018) = 300208 because 4 ·270 +7 ·271 +20 ·272 +15 ·273 = 310018 and 22 ·810 +61 ·811 +45 ·812 = 300208

Z/Z3(310018) =

1 1 2 0 22
1 2 0 2 61
0 0 2 1 45
4 7 20 15 (310018,300208)

Similarly Z/Z3(14607) = 118198 because 4 ·270 +20 ·272 = 14607 and 19 ·810 +1 ·811 +18 ·812 = 118198

10 is the additive identity of f
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Z/Z3(14607) =

1 0 2 0 19
1 0 0 0 1
0 0 2 0 18
4 0 20 0 (14607,118198)

1.3 More consise representation of Finite Constraint Systems

In this paper, Finite Constraint Systems will sometime be represented for consisely as in the following

l0,0 l0,1 . . . l0,C−1
l1,0 l1,1 . . . l1,C−1

...
...

...
...

lR−1,0 lR−1,1 ... lR−1,C−1

The information omitted is redundate and can readily be inferred from the information available.
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2 Finite Constraint Systems as a class of Finite Fields

This section will show that finite constraint systems are class of finite fields.

Let f be a finite field function f:Z→ Z with corresponding RxC field matrix m and binary additive and multiplicative operations on
finite constraint systems s1 and s2 are collectively denoted by ⋆.

s1⋆s2 =


a0,0 a0,1 · · · a0,|I|−1
a1,0 a1,1 · · · a1,|I|−1

...
...

...
...

av−1,0 av−1,1 · · · av−1,|I|−1

 ⋆


b0,0 b0,1 · · · b0,|I|−1
b1,0 b1,1 · · · b1,|I|−1

...
...

...
...

bv−1,0 bv−1,1 · · · bv−1,|I|−1

 =


a0,0 ⋆b0,0 a0,1 ⋆b0,1 · · · a0,|I|−1 ⋆b0,|I|−1
a1,0 ⋆b1,0 a1,1 ⋆b1,1 · · · a1,|I|−1 ⋆b1,|I|−1

...
...

...
...

av−1,0 ⋆bv−1,0 av−1,1 ⋆bv−1,1 · · · av−1,|I|−1 ⋆bv−,|I|−1


To recognize these finite constraint systems as as finite fields we must recognize that

• s1 ⋆ s2 is closed under ⋆

• the additive identity is the R×C matrix


0 0 · · · 0
0 0 · · · 0
...

...
...

...
0 0 · · · 0

 where 0 represents the additive identity of f

• the multiplicative identity is the R×C matrix


1 1 · · · 1
1 1 · · · 1
...

...
...

...
1 1 · · · 1

 where 1 represents the multiplicative identity of f of

• additive inverse of s1 =


a1,1 a1,2 · · · a1,k
a2,1 a2,2 · · · a2,k

...
...

...
...

av,1 av,2 · · · av,k

 is defined as


−a1,1 −a1,2 · · · −a1,k
−a2,1 −a2,2 · · · −a2,k

...
...

...
...

−av,1 −av,2 · · · −av,k

where −ai,i is the additive inverse

of ai,i in f

• multiplicative inverse of s1 =


a1,1 a1,2 · · · a1,k
a2,1 a2,2 · · · a2,k

...
...

...
...

av,1 av,2 · · · av,k

 is defined as


a−1

1,1 a−1
1,2 · · · a−1

1,k
a−1

2,1 a−1
2,2 · · · a−1

2,k
...

...
...

...
a−1

v,1 a−1
v,2 · · · a−1

v,k

 where a−1
i,i is the multiplicative

inverse of ai,i in f

• it is also easy to recognize that operations ⋆ are both associative and commutative as these properties are obtained from f

The above proves that finite constraint systems for a class of finite fields.
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3 Integer multiplication and exponentiation for finite constraint systems

3.1 Multiplication as repeated addition

Let m be a finite constraint system, −m represent the matrix m with all elements replaced by their additive inverse and m0 =
0 0 · · · 0
0 0 · · · 0
...

...
...

...
0 0 · · · 0

 be the additive identity matrix for m. Multiplication by integers i denoted i × m is defined by distinguishing

the following cases:

• 0∗m = m0:

• i∗m = ∑
i
i=1 m when i > 0

• i∗m = ∑
i
i=1−m when i < 0

3.2 Exponentiation as repeated multiplication

Let m be a finite constraint matrix, m−1 represent the matrix m with all elements replaced by their multiplicative inverse and m1 =
1 1 · · · 1
1 1 · · · 1
...

...
...

...
1 1 · · · 1

 be the multiplicative identity matrix for m. Exponentiation by integers i denoted mi is defined by distinguishing the

following cases:

• m0 = m1

• mi = ∏
i
i=1 m when i > 0

• m = ∏
i
i=1 m−1 when i < 0
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4 Partitioning finite constraint systems

4.1 Example of column partitioning

Instances of finite matrices m can be partitioned into disjunct subsetsm0,m1, ...,m2|k|−1 .

For example, consider the Z/Z3 finite file matrix m presented below together with the partitioning key k = {0,4}.

m =


1 0 1 0 2 0 0 2 0 1
1 1 0 2 0 0 2 1 0 0
0 2 0 1 2 0 0 2 2 0
0 0 0 2 0 1 0 0 2 1
2 0 0 2 1 0 2 0 1 0

. Partitioning of m using key k denoted

m◁ k yields the the partitions m0, m1, m2, m3 defined as

m0 =


0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0

 corresponds with all columns x of m for which m[0,x] = 0 and m[4,x] = 0. .

m1 =


0 0 1 0 0 0 0 2 0 1
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0

 corresponds with all columns x of m for which m[0,x] ̸= 0 and m[4,x] = 0.

m2 =


0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 2 0 0 0
0 0 0 1 0 0 0 0 2 0
0 0 0 2 0 0 0 0 2 0
0 0 0 2 0 0 2 0 1 0

 corresponds with all columns x of m for which m[0,x] = 0 and m[4,x] ̸= 0.

m3 =


1 0 0 0 2 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
2 0 0 0 1 0 0 0 0 0

 corresponds with all columns x of m for which m[0,x] ̸= 0 and m[4,x] ̸= 0.

4.2 Column partitioning of finite constraint systems with keys of cardinality 2

Consider a finite constraint system with matrix representation m =

l0,0 l0,1 . . . l0,|I|−1 ie0
l1,0 l1,1 . . . l1,|I|−1 ie1

...
...

...
...

...
l|v|−1,0 l|v|−1,1 ... l|v|−1,|I|−1 ie|v|−1

i0 i1 . . . i|I|−1 (x, f (x))

over field F and

partitioning key k = {x,y},x ̸= y. The key k partitions I into 2|k| possibly empty set of integers I = i0 ∪ i1 ∪ ...∪ i2k−1 defined as

• i3 denotes the subset of columns m having literals of both the row x and y.

• i2 denotes the subset of columns of m that includes literals in row x and necessarily including no literals in row y

• i1 denotes the subset of columns of m that with no literals of in row x and necessarily including literals in row y.

• i0 denotes the subset of columns of m that included no literals in row x or y.
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4.3 Column partitioning keys of cardinality k > 2

Row partitioning with keys of cardinality greater than 2 is possible, However this generalization is not pursued further in this docu-
ment.

4.4 Row partitioning

In the previous section column partitioning was introduced. Row partition is analogous to column partition except in the latter cases
the rows of the matrix are partitioned instead of columns.

Consider a finite constraint system with matrix representation m =

l0,0 l0,1 . . . l0,|I|−1 ie0
l1,0 l1,1 . . . l1,|I|−1 ie1

...
...

...
...

...
l|v|−1,0 l|v|−1,1 ... l|v|−1,|I|−1 ie|v|−1

i0 i1 . . . i|I|−1 (x, f (x))

over field F and

partitioning key k = {x,y},x ̸= y. The key k partitions I into 2|k| possibly empty set of integers I = i0 ∪ i1 ∪ ...∪ i2k−1 defined as

• i3 denotes the subset of rows m having literals of both the row x and y.

• i2 denotes the subset of rows of m that includes literals in row x and necessarily including no literals in column y

• i1 denotes the subset of rows of m that with no literals of in row x and necessarily including literals in column y.

• i0 denotes the subset of rows of m that included no literals in column x or y.
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5 Division and Remainder operators for Finite Constraint Systems with integers

This section is about defining division / and remainder % operators for finite constraint systems over integer sets I and integers i over
common finite field F . These operators will satisfy the identity I = I/i∪ I % i.

5.1 The division operator

5.1.1 A few examples

Consider

• the set of integers I = {166,21,1,231,101,27,168,23,153,28}

• a matrix representation m =


1 0 1 0 2 0 0 2 0 1
1 1 0 2 0 0 2 1 0 0
0 2 0 1 2 0 0 2 2 0
0 0 0 2 0 1 0 0 2 1
2 0 0 2 1 0 2 0 1 0

 of I over Z/Z3

• the integer value 1 over F represented as a single column matrix i =


1
0
0
0
0



The operation of filtering I by i denoted I/i is defined as I/i =


1 0 1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 0 0

.

Similarly I/


0
1
2
0
0

=


0 0 0 0 0 0 0 2 0 0
0 1 0 0 0 0 0 1 0 0
0 2 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

 , I/


2
0
2
0
2

=


0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

and a final example I/


2
0
2
0
0

=


0 0 0 0 2 0 0 2 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 2 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0


5.1.2 The general case of division with integers

The previous section presented examples of dividing finite constraint systems by integers. For the more general case we consider
finite constraint systems I,R,D over common finite field F where the matrix representation of D has only one column . The result of
I/D = R is defined as follows

l0,0 l0,1 . . . l0,|I|−1
l1,0 l1,1 . . . l1,|I|−1

...
...

...
...

l|v|−1,0 l|v|−1,1 ... l|v|−1,|I|−1

/

d0
d1
...

d|v|−1

=

r0,0 r0,1 . . . r0,|I|−1
r1,0 r1,1 . . . r1,|I|−1

...
...

...
...

r|v|−1,0 r|v|−1,1 ... r|v|−1,|I|−1

where

• For all columns x
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– for all rows y

* ry,x = iy,x when dy = 0 or ly,x = dy

* ry,x = 0 otherwise

5.2 The remainder operation for finite constraint systems

5.2.1 The general case

Where I is a finite constraint systems and i is an integer, the remainder operation denoted I%i, is defined as I%i = I − (I/i),where
−./ respectively represent the set difference operator and the division operator for finite constraint systems.

5.2.2 A few examples

Consider the set of integers I over Z/Z3 with matrix representation m =


1 0 1 0 2 0 0 2 0 1
1 1 0 2 0 0 2 1 0 0
0 2 0 1 2 0 0 2 2 0
0 0 0 2 0 1 0 0 2 1
2 0 0 2 1 0 2 0 1 0

 and an integer value

i represented as a single column matrix i =


1
0
0
0
0



The operation of dividing I using i denoted I % i gives


0 0 0 0 2 0 0 2 0 0
0 1 0 2 0 0 2 1 0 0
0 2 0 1 2 0 0 2 2 0
0 0 0 2 0 1 0 0 2 0
0 0 0 2 1 0 2 0 1 0

.

Similarly I %


0
1
2
0
0

=


1 0 1 0 2 0 0 0 0 1
1 0 0 2 0 0 2 0 0 0
0 0 0 1 2 0 0 0 2 0
0 0 0 2 0 1 0 0 2 1
2 0 0 2 1 0 2 0 1 0

 , I %


2
0
2
0
2

=


1 0 1 0 2 0 0 2 0 1
1 1 0 2 0 0 2 1 0 0
0 2 0 1 2 0 0 2 2 0
0 0 0 2 0 1 0 0 2 1
2 0 0 2 1 0 2 0 1 0

and as a final example

I %


2
0
2
0
0

=


0 0 0 0 0 0 0 0 0 0
0 1 0 2 0 0 2 0 0 0
0 2 0 1 0 0 0 0 2 0
0 0 0 2 0 1 0 0 2 0
0 0 0 2 0 0 2 0 1 0


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6 The Satisfiability Problem as a finite constraint systems over Z/Z3

6.1 An example

Consider the example Boolean formula F = (x+ y) · (x+ ỹ) · (x̃+ z̃) · ( ˜y+z)· It is straight forward to represent F as a set of integers
over Z/Z3.

F =
1 1 2 0
1 2 0 2
0 0 2 1

6.2 The general case

Let F = c0· c1 · ... · ck−1 over variable set v be a well formed formula in conjunctive normal form.

F can equivalently be represented as a matrix

m =

l0,0 l0,1 . . . l0,k−1
l1,0 l1,1 . . . l1,k−1

...
...

...
...

l|v|−1,0 l|v|−1,1 ... l|v|−1,k−1

and an arbitrary ordering key k. In particular

• ix ̸= 0 for all columns x of m

• li, j ∈ {1,0,2} such that li, j =


1 li, j ∈ c j

0 li, j /∈ c j

2 ˜li, j ∈ c j

. It is easy to recognize m ∈ Z|V |×k
3 as a |V |× k matrix with elements taken from

GF(3).

It is currently assumed that the formula ie0· ie1 · ... · ie|v|−1 represents the conjunctive normal form of F .

6.3 The satisfiability problem as a finite constraint system

Where S = (I,k,Z/Z3) is a finite constraint system the satisfiability problem is defined as finding out if an integer i ̸= 0 exists such
that I%i = /0 .

6.4 The generalized satisfiability problem as a finite constraint system

Where S = (I,k,F) is a finite constraint system the generalized satisfiability problem is defined as finding out if an integer i ̸= 0 exists
such that I%i = /0.
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