
Generating efficient table driven parsers for non
context free languages

Maurice Gittens <maurice at gittens dot nl>

June 20, 2025

Abstract

This paper introduces a slight modification of the Noam Chomsky’s phrase structure
grammars called dotted grammars. The grammars will be shown to preserve the gen-
erative capabilities of unrestructed phrase structure grammars. In addition it will be
shown that dotted grammars allow the mechanical construction of efficient table driven
parsers for non context free languages.

The copyright of this document belongs to its author. Making complete
and unmodified copies of this document is allowed.

1

Contents

1 Preliminaries 4
1.1 Introduction . 4
1.2 Acknowledgments . 4
1.3 Changes . 4

2 Phrase structure grammars 6
2.1 Definitions . 6
2.2 Sentences and languages . 6
2.3 An example . 7
2.4 The Chomsky hierarchy . 8

2.4.1 Unrestricted phrase structure grammars 8
2.4.2 Context sensitive grammars 8
2.4.3 Context free grammars . 8
2.4.4 Right linear grammars . 8

3 Dotted grammars 9
3.1 Introduction . 9
3.2 Definition . 9
3.3 Sentences and languages for dotted grammars 9

3.3.1 Definition . 9
3.3.2 More terminology . 10

3.4 An example . 10
3.5 Parsing with dotted grammars . 11

3.5.1 Deciding where to rewrite 11

4 Left to right parsers for deterministic dotted grammars 13
4.1 Introduction to deterministic dotted grammars 13
4.2 Defining left to right parsers for deterministic dotted grammars 13
4.3 Parsing tables for two deterministic dotted grammars 14

4.3.1 A parsing table for anbncn(n > 0) 14
4.3.2 A simple expression grammar 15

5 Recording grammars 16
5.1 Introduction . 16
5.2 Definition . 16
5.3 Sentences and languages for recording grammars 17

5.3.1 Definition . 17
5.4 An example recording grammar . 17

2

5.5 A parse table for the example recording dotted grammar 18
5.6 Some comments . 18

6 How do we construct parsing tables for deterministic dotted grammars? 19
6.1 Introduction . 19
6.2 Generating a parse table for the language anbncn(n > 0); step by step. 19

6.2.1 Compute the initial terminal set for a right-hand side 20
6.2.2 Connecting the right-hand sides 20
6.2.3 Computing subsequent terminal sets 21
6.2.4 Compute the selection sets for the right-hand sides 21

6.3 Selecting a production rule for rewriting 22
6.3.1 Selecting a left-hand side 22
6.3.2 Selecting a right-hand side 23

7 LL(1) grammars and LR(1) grammars as subsets of deterministic dotted
grammars 24
7.1 Introduction . 24
7.2 LL(1) grammars as deterministic dotted grammars 24
7.3 LR(1) grammars as deterministic dotted grammars 25

8 The TINY parser generator 28
8.1 Introduction . 28
8.2 Language definition files . 28
8.3 An Example . 29
8.4 Semantic actions . 30

9 Simulating Turing machines with deterministic dotted grammars 31
9.1 Introduction . 31
9.2 Recursively enumerable languages 31

10 Multi-dot Grammars 34
10.1 Introduction . 34
10.2 Definition . 34
10.3 Rewriting with multi-dot grammars 35

10.3.1 BNF definition of sentential forms 35
10.3.2 The reduce function for multi-dot grammars 35

11 Conclusion 37

3

Chapter 1

Preliminaries

1.1 Introduction
This paper introduces a slightly modified version of phrase structure grammars (called
deterministic dotted grammars) which allow efficient table driven parsers to be gener-
ated. LL(1) and LR(1) grammars are shown to be proper subsets of the class of deter-
ministic dotted grammars. The class of languages accepted by deterministic grammars
include at least some context sensitive languages. The implementation of a parser
generator for deterministic dotted grammars (which generates C++) is also briefly in-
troduced. To the knowledge of the author no similar of table driven parsers exists in
literature.

1.2 Acknowledgments
In this section I would like to acknowledge the supportive comments and critical read-
ing of the following people. Please let it be understood that any errors, omitions, im-
proper use of the English language etc. are all my fault.

• Dick Grune <dick@cs.vu.nl> suggested corrections for early versions of this
document. A real motivator.

• John Shutt <jshutt@owl.wpi.edu> spotted a number of errors in the definition of
dotted grammars.

• Elena Mauro <elena_mauro@hotmail> suggested corrections for different chap-
ters in this document

1.3 Changes
• January 24 2003; fix a few typographical errors in the section on multi-dot gram-

mars

• December 5 2002; Improve my use of the English language

• April 13 2002; Added corrections pointed out by Elena Mauro <elena_mauro@hotmail.com>

• February 26 2002; Found out about the spell checker in lyx :-). Minor cleanups.

4

• August 8 2001; Reintroduce the chapter on multi-dot grammars with some cor-
rections. Some people asked for this.

• June 6 2001; An example of parse table generation process; more corrections

• April 24 1997; Corrected some typos

• April 20 1997; Removed multi-dot grammars from this paper. Add a parse table
for the recording grammar example.

• April 131997; Added an example recording grammar; corrected a few inaccura-
cies. Added a section for acknowledgments.

• April 11 1997; Added corrections to chapter 3 by John Shutt <jshutt@owl.wpi.edu>

• May 03 1997; Start using cdot to represent dots in production rules. Corrected a
few errors in example parse tables. Corrections for recording grammars.

• March 23 1997; Original version at http://www.gits.nl/grammar.html

Maurice Gittens

December 2002

5

Chapter 2

Phrase structure grammars

This section presents a definition of Noam Chomsky’s phrase structure grammars. Fur-
thermore some terminology, properties and a typical example are also presented.

2.1 Definitions
An unrestricted phrase structure grammar (PSG) is defined as a 4 tuple (N, T, S, P)
where:

• N is a nonempty finite set of nonterminal symbols

• T is a non empty finite set of terminal symbols

• S element of N is a distinguished symbol called the start symbol

• P is a set of rewriting rules called production rules of the form:

α → β

α ∈ (N ∪T)+containing at least one nonterminal and β ∈ (N ∪T)∗.

2.2 Sentences and languages
A sentence x for a PSG G is an element of T∗ for which there exists a finite sequence
ω1, ω2, ... , ωn and stringsAi,Bi,Ci,Di(1 ≤ i ≤ n−1)over (N ∪T)∗ such that:

ω1 = S

ωi = AiCiBi (1 ≤ i ≤ n−1)

ωi+1 = AiDiBi 1 ≤ i ≤ n−1 andCi → Di Ci is an element of P.

ωn = x

The sequences ω1,ω2, ...,ωn and ωn, ...,ω1 are respectively called a generation se-
quence and a reduction sequence of a sentence x. [ref. 7] An element ωi(1 ≤ i ≤ n)
of these sequences is called a sentential form of G. Thus a sentence for a grammar G
may be defined as a sentential form of G consisting solely of terminal symbols. The set
of sentences which is generated by a PSG G is called the language defined by G. The

6

language defined by G is denoted by L(G). A sentence is called ambiguous for a PSG
G if it is generated by more than one generation sequence. A phrase structure grammar
is called ambiguous if it generates at least one ambiguous sentence.

2.3 An example
As an example we consider the phrase structure grammar defined by the production
rules:

S → aSBC

S → aBC

CB → BC

aB → ab

bB → bb

bC → bc

cC → cc

Capital letters represent nonterminals while other alphabetic characters represent ter-
minals. The start symbol is represented by the letter S. This grammar has been shown
to generate the language anbncn (n ≥ 1).

A derivation of the string aaaabbbbcccc by this grammar follows:

Sentential form Production rules
S S → aSBC

aSBC S → aSBC
aaSBCBC S → aSBC

aaaSBCBCBC S → aBC
aaaaBCBCBCBC aB → ab
aaaabCBCBCBC CB → BC
aaaabBCCBCBC CB → BC
aaaabBCBCCBC CB → BC
aaaabBCBCBCC CB → BC
aaaabBCBBCCC CB → BC
aaaabBBCBCCC CB → BC
aaaabBBBCCCC bB → bb
aaaabbBBCCCC bB → bb
aaaabbbBCCCC bB → bb
aaaabbbbCCCC bC → bc
aaaabbbbcCCC cC → cc
aaaabbbbccCC cC → cc
aaaabbbbcccC cC → cc
aaaabbbbcccc

As might be noted, an important problem faced when generating sentences with
these grammars is the problem of deciding at which position of a sentential form rewrit-
ing should take place. Another issue is to decide which production rule such be used
to rewrite a particular sentential form.

7

2.4 The Chomsky hierarchy

2.4.1 Unrestricted phrase structure grammars
These grammars have no restrictions on the forms of their production rules. These
grammars are called type 0 grammars. The set of languages generated by these gram-
mars is called the set of recursively enumerable languages.

2.4.2 Context sensitive grammars
Let α → β be a production rule of a phrase structure grammar G. If for all production
rules of G it holds that |α| ≤ |β | then G is a context sensitive or monotonic grammar.
Since no production rule shortens the length of sentential forms, a key property of
these grammars is that the length of a sentential forms of a grammar G for a sentence
x ∈ L(G) is never greater than |x|. These grammars are called type 1 grammars. The
languages defined by these grammars are called context sensitive languages.

2.4.3 Context free grammars
These phrase structure grammars have production rules of the form: A → β where
A ∈ N and β ∈ (N ∪T)+. Let G be a context free phrase structure grammar. It has
been shown that every x ∈ L(G) can be derived by applying no more than x production
rules. These grammars are also called type 2 grammars. The languages generated by
context free grammars are called context free languages.

2.4.4 Right linear grammars
Right linear grammars have production rules of the form:

1. A → x

2. A → xA′

where A and A′ represent arbitrary nonterminals and x represents an arbitrary terminal
symbol. These grammars are also called type 3 grammars. The languages generated
by these grammars are called regular languages.

Type 3 languages are a proper subset of type 2 languages which are a proper subset
of type 1 languages which are a proper subset of the recursively enumerable languages.

8

Chapter 3

Dotted grammars

3.1 Introduction
In general it has not proven to be an easy task to define languages using unrestricted
phrase structure grammars. Non context free grammars, in general, do not allow simple
notions of "flow of control" to be deduced from the grammars. To solve this problem,
while maintaining the generative capacity of these grammars, a dot is introduced on
both sides of the production rules of phrase structure grammars. The dot functions as
an oracle which reveals the location in sentential forms where rewriting should take
place.

3.2 Definition
A dotted grammar (DG) is defined as a PSG to which information which supports the
notion of a ’current rewriting symbol’, is added. More formally a DG is defined as a 4
tuple (N,T,S,P)

• N is a non empty finite set of nonterminal symbols

• T is a non empty finite set of terminal symbols

• S element of N is a distinguished symbol called the start symbol

• P is a set of rewriting rules called production rules of the form:
ω1 ·Aω2 → ω3 ·ω4 A ∈ N

ω1,ω2,ω3, and ω4 are elements (N∪T)∗. The symbol A is called the subject of the pro-
duction rule ω1 ·Aω2 → ω3 ·ω4. ω1 ·Aω2 is called the left-hand side of the production
rules while ω3 ·ω4 represents the right-hand side.

3.3 Sentences and languages for dotted grammars

3.3.1 Definition
A sentence x for a DG G is an element of T∗ for which there exists a finite sequence
ω1 , ω2, ... ωn (n > 1) of dotted sentential forms. A dotted sentential form of a DG is

9

an element of (N ∪T)∗ ·(N ∪T)∗ .

ω1 = ·S

ωi = BiCi ·DiEiFi

ωn = x·

For ωi+1the following holds:

1. Di ∈ N then ωi+1 = BiIi ·JiFi and pi =Ci ·DiEi → Ii ·Ji is a production rule where
(1 ≤ i ≤ n−1).

2. Di ∈ T then wi+1 = BiCiDi ·EiFiwhere (1 ≤ i ≤ n−1).

The set of sentences which is generated by a dotted grammar G is called the language
defined by G. The language defined by G is denoted by L(G). This definition for
sentences of dotted grammars corresponds directly to the definition of sentences as
these are generated by phrase structure grammars. In the case of dotted grammars
however rewriting is restricted to the location in sentential forms specified by the dot.
As a result it holds that for every dotted grammar G there exists a phrase structure
grammar G′ such that L(G) is a subset of L(G′). The grammar G’ is obtained by
removing the dot from the production rules of G.

3.3.2 More terminology
Since dotted grammars are special case phrase structure grammars the terminology of
phrase structure grammars is applicable to dotted grammars.

Let r = ω1 ·Aω2 → ω3 ·ω4 be a production rule of a dotted grammar, r is called a
length decreasing production rule if |ω1ω2| > |ω3ω4|, r is called length increasing if
|ω1ω2| < |ω3ω4| . r is called length preserving otherwise.

A dotted grammar G = (N,T,S,P) is said to be deterministic under a rule selection
strategy f when f defines a one to one function from the set of sentential forms of G
to the set of production rules P of G. Clearly a deterministic dotted grammar G allows
one and only one derivation for all sentences in L(G), so deterministic dotted grammars
don not generate ambiguous sentences.

3.4 An example
The language anbncn(n > 0)

Consider a DG for the language anbncn(n > 0). Capital letters are nonterminals,
other letters are terminals and S is the start symbol.

·S → a ·SBC

·S →a ·BC

·CB →BC·

BC ·C →·BCC

BC ·B →·BBC

a ·B →ab·

10

b ·B →bb·

b·C →cc·

c·C →cc·

Using this grammar the sentence aaaabbbbcccc is generated.

sentential form production tule
·S ·S →a ·SBC

a·SBC ·S →a ·SBC
aa·SBCBC ·S →a ·SBC

aaa·SBCBCBC ·S →a ·BC
aaaa·BCBCBCBC a ·B →ab·
aaaab·CBCBCBC ·CB → BC ·
aaaabBC·CBCBC ·CB → BC·
aaaabBCBC·CBC ·CB → BC ·
aaaabBCBCBC·C BC ·C → ·BCC
aaaabBCBC·BCC BC ·B → ·BBC
aaaabBC·BBCCC BC ·B → ·BBC
aaaab·BBCBCCC b ·B → bb·
aaaabb·BCBCCC b ·B → bb·
aaaabbb·CBCCC ·CB → BC·
aaaabbbBC·CCC BC ·C → ·BCC
aaaabbb·BCCCC b ·B → bb·
aaaabbbb·CCCC b ·C → bc·
aaaabbbbc·CCC c ·C → cc·
aaaabbbbcc·CC c ·C → cc·
aaaabbbbccc·C c ·C → cc·
aaaabbbbcccc· -

3.5 Parsing with dotted grammars
When one considers designing efficient parsers for non context free phrase structure
grammars it is important to note that such a parser faces at least the following problems
while parsing an input string:

1. deciding at which point in the current sentential form rewriting should take place

2. selecting a “proper” production rule with which to rewrite the current sentential
form

3.5.1 Deciding where to rewrite
The main idea in the design of dotted grammars is to make the position in sentential
forms at which rewriting should take place explicit. So we tell the parser at which point
in the sentential form to rewrite so that the parser does not have to decide. Now the
only problem the parser has to solve is the problem of selecting a production rule with
which to rewrite the current sentential form.

11

Notice that in the example in paragraph 3.4 the dot identifies the position at which
rewriting takes place? This is what we gain by adding a dot to the production rules.
The remaining problem the parser should solve is the selection of a production rule
with which to rewrite the current sentential form. We want this to be a constant time
operation relative to the length of sentential forms, as to make efficient parsing of dotted
grammars possible.

In conventional table driven parsers (like LL(1) and LR(1) parsers) the problem of
deciding where to rewrite is solved by choosing to use left most derivations and right
most derivations in reverse respectively. This choice allows LL(1) and LR(1) parsers
to “know” at which point in a sentential form rewriting should take place.

12

Chapter 4

Left to right parsers for
deterministic dotted grammars

4.1 Introduction to deterministic dotted grammars
Let G = (N,T,S,P) be a dotted grammar. The production rules P of G may be parti-
tioned into sets of production rules which have a common left-hand side. Such a set of
production rules may be written as:

C·DE → I1 ·J1

C·DE → I 2·J 2

...

C·DE → I k·Jk

The set of strings I1·J1, I2·J2, ... , Ik·Jk will be called the right-hand sides of C·DE
denoted by RHS(C·DE). For each right-hand side r ∈ RHS(C ·DE) we define a set of
terminal symbols t called the selection set of r. The selection set of a right-hand side r
is denoted by SelectionSet(r). When the selection sets for all left-hand sides in a dotted
grammar G are disjoint we call G a deterministic dotted grammar.

4.2 Defining left to right parsers for deterministic dot-
ted grammars

A left to right parser for a dotted grammars is a device which allows sentences to be
derived in the following manner. A sentence x for a dotted grammar G is produced by a
finite sequence ω1,ω2, ...,ωn(n > 1) of detailed sentential forms. A detailed sentential
form is a triple (X ,Y,Z) where X and Z are elements of T∗ and Y is an element ((N ∪
T)∗ ·(N ∪T)∗).

ω1 = (, ·S,x)

ωi = (Ai,BiCi ·DiEiFi,LiGi) Li is a terminal.

13

ωn = (x,y·,)
y is an element of (N ∪T)∗, called a translation of x.

The symbol Li is called the lookahead symbol. For ωi+1one of the following holds:

1. The prediction step: ωi+1 = (Ai,BiIi ·JiFi,LiGi where Di ∈N and Ci ·DiEi → Ii ·Ji
is a production rule, and Li ∈ SelectionSet(Ii · Ji).

2. The match step: ωi+1 = (AiLi,BiCiLi ·EiFi,Gi) where Di ∈ T and Di = Li.

It will be possible to define different types of parsers based on the method used to
generate selection sets for right-hand sides.

4.3 Parsing tables for two deterministic dotted gram-
mars

It is well known that efficient table driven parsers can be defined for LL(1) and LR(1)
grammars. This subsection gives example parsing tables for two deterministic dotted
grammars.

4.3.1 A parsing table for anbncn(n > 0)

A deterministic dotted grammar for the language anbncn(n > 0) follows.
·S → ·aS
a·S →a·aSBC
a·S →a·BC
BC·B →·BBC
C·CB →CBC·
BC·C →·BCC
b·CB →bBC·
a·B →a·b
b·B →b·b
b·C →b·c
c·C →c·c

This grammar allows the mechanical construction of the following parsing table.

left hand side/terminals a b c
·S ·aS - -
a·S a·aSBC a·BC -

C·CB CBC· CBC· CBC·
BC·C ·BCC ·BCC ·BCC
BC·B ·BBC ·BBC ·BBC
b.CB bBC. bBC. bBC.
a·B a·b a·b a·b
b·B b·b b·b b·b
b·C b·c b·c b·c
c·C c·c c·c c·c

14

4.3.2 A simple expression grammar
In this section a parsing table for the following expression grammar is presented. In
the following grammar the identifier NUM is a terminal and other identifiers are non-
terminals. The identifier expr is the start symbol.

·expr → ·term _expr

term·_expr →expr ·+ term _expr

term·_expr → expr ·

expr + term·_expr →term·_expr

·term →·factor _term

factor·_term →term ·* factor _term

factor·_term →term ·

term * factor·_term →factor·_term

·factor → ·NUM factor

NUM ·factor →factor ·

This grammar allows the mechanical construction of the following parsing table.

left hand sides/terminals + * NUM
·expr ·term _expr ·term_expr ·term_expr

term·_expr expr·+term _expr expr· expr·
expr+term·_expr term·_expr term·_expr term·_expr

·term ·factor _term ·factor _term ·factor _term
factor·_term term· term·*factor _term term·

term*factor ·_term factor·_term factor·_term factor·_term
·factor - - ·NUM factor

NUM·factor factor· factor· factor·

15

Chapter 5

Recording grammars

5.1 Introduction
This section defines the notion of a recording grammars. The machine model used by
recording grammars is based on four stacks. Recording grammars are based on the
idea of recording what has to be done in the future based on that which has been done
in the past and “executing” or “playing back” the actions recorded at future times.
As will be illustrated with a simple example recording grammar, these grammars seem
to reduce the number of rules needed to define a language as compared to dotted gram-
mars.

5.2 Definition
A recording grammar (RG) is defined as a dotted grammar to which a special nonter-
minal symbol called a playback symbol is added. More formally a DG is defined as a
4 tuple (N, T, S, P)

• N is a non empty finite set of nonterminal symbols including a special symbol
called the playback symbol denoted by #.

• T is a non empty finite set of terminal symbols

• S element of N is a distinguished symbol called the start symbol

• P is a set of rewriting rules called production rules of the form:
ω1 ·Aω2 → ω3 ·ω4 → ω5 ·ω6 AεN, A ̸=#

ω1,ω2,ω3,ω4,ω5, and ω6 ∈ (N∪T) * while w1 do not ω2 contain the playback symbol
#. The symbol A is called the subject of the production rule ω1 ·Aω2 → ω3 ·ω4 → ω5 ·
ω6 . ω1 ·Aω2 is called the left-hand side of the production rules while ω3 ·ω4represents
the right-hand side and ω5 ·ω6 represents the statement to be recorded.

16

5.3 Sentences and languages for recording grammars

5.3.1 Definition
A sentence w for a RG G is an element of T∗ for which there exists a finite sequence
ω1 , ω2, ... ωn (n > 1) of recording sentential forms. A recording sentential form is a
4 tuple (W,X ,Y,Z) where W and Z are elements of T∗ while X and Y are elements of
((N ∪T)∗ ·(N ∪T)∗).

ω1 = (, ·S, ·,w)

ωi = (Ai,BiCi ·DiEiFi,Gi ·Hi, Ii)

ωn = (w,x·,y · z,)
x,y and z is are element of (N ∪T)∗, called a translation of w.

For ωi+1one of the following holds:

1. The prediction step: ωi+1 = (Ai,BiJi ·KiFi,GiLi ·MiHi.Ii) where Di ∈ N,Di ̸=#
and Ci ·DiEi → Ji ·Ki → Li ·Mi is a production rule.

2. The playback instruction: ωi+1 = (Ai,Gi ·Hi,BiCi ·EiFi, Ii) where Di=#.

3. The match step:ωi+1 = (AiDi,BiCiDi ·EiFi,Gi ·Hi,Ji)where Di ∈ T, Ii = DiJi.

As usual, the set of sentences which is generated by the recording grammar G is called
the language defined by G. The language defined by G is denoted by L(G).

5.4 An example recording grammar
Consider a recording grammar for the language anbncn(n > 0). Capital letters are
nonterminals, other letters are terminals and S is the start symbol.

·S → ·aS → ·B#

a ·S → ·aS → ·B

a ·S → ·# → ·

·B → ·b → ·c

Using this grammar the sentence aaabbbccc is produced.

17

recording sentential form production tule
(,·S,·, aaabbbccc) ·S → ·aS → ·B#

(,·aS,·B#,aaabbbccc) accept a
(a,a·S,·B#,aabbbccc) a.S →.aS → .B

(a,.aS,.BB#,aabbbccc) accept a
(aa,a·S,·BB#,abbbccc) a·S →·aS → ·B

(aa,·aS,·BBB#,abbbccc) accept a
(aaa,a·S,·BBB#,bbbccc) a·S →·# → ·
(aaa,·#,·BBB#,bbbccc) playback
(aaa,·BBB#,·,bbbccc) ·B →·b → ·c
(aaa,·bBB#,·c,bbbccc) accept b
(aaab,b·BB#,·c,bbccc) ·B →·b → ·c
(aaab,b·bB#,·cc,bbccc) accept b
(aaabb,bb·B#,·cc,bccc) ·B →·b → ·c
(aaabb,bb·b#,·cc,bccc) accept b
(aaabbb,bbb·#,·ccc,ccc) playback
(aaabbb,·ccc,bbb·,ccc) accept c
(aaabbbc,c·cc,bbb·,cc) accept c
(aaabbbcc,cc·c,bbb·,c) accept c
(aaabbbccc,ccc·,bbb·,) -

5.5 A parse table for the example recording dotted gram-
mar

A parse table for the recording grammar given above is shown here.

left hand side / terminals a b c
·S ·aS → ·B# - -
a·S ·aS→·B ·# →· ·# →·
.B - ·b →·c -

This parse table guides the acceptance of the language intended with less produc-
tion rules and smaller parse tables.

5.6 Some comments
What I like about the recording grammar in the example above is the fact that it accepts
the language intended with significantly less production rules as compared to dotted
grammars and plain vanilla Chomsky grammars. I hope that the power of “recording”
and “playing back” will serve to simplify dotted grammars in general. Since I view
grammars as a formal model for programming languages I hope that similar features
in modern programming languages will prove to be an effective means to combat com-
plexity in software systems. I also hope to find out more about the formal properties of
these grammars. Please do not hesitate to help.

18

Chapter 6

How do we construct parsing
tables for deterministic dotted
grammars?

6.1 Introduction
My reading of the principle of procrastination is:

Postpone until later that which you might never have to do at all.

To this I add:

Do now that which you are absolutely certain you must do now.

Put another way, we postpone in those cases we do not know for certain what the
most appropriate action is and we act swiftly in those cases we do know what the most
appropriate action is. Using these principles a mechanism will be devised which allows
the mechanical construction of parsers for deterministic dotted grammars.

In section 6.2 I first try to informally describe the process of generating parse tables
for deterministic dotted grammars. In section 6.3 I will attempt a more formal (and
hopefully accurate and readable) formulation of the same process.

6.2 Generating a parse table for the language anbncn(n>
0); step by step.

The process of generating parse tables for deterministic dotted grammars will be pre-
sented here using the language anbncn(n > 0) as an example. The process detailed for
generating the parse tables is essentially the process used by the TINY parser generator
introduced later in this paper.

1. Compute the initial terminal set for right-hand sides

2. selectively associate (or connect) the right-hand sides with left-hand sides

3. Compute the subsequent terminal sets and for left hands ides

19

4. Compute the selection sets for the right-hand sides.

The deterministic dotted grammar for the language anbncn(n > 0) is repeated here for
reference:

·S → ·aS
a·S →a·aSBC
a·S →a·BC
BC·B →·BBC
C·CB →CBC·
BC·C →·BCC
b·CB →bBC·
a·B →a·b
b·B →b·b
b·C →c·c
c·C →c·c

6.2.1 Compute the initial terminal set for a right-hand side
First we designate that each left-hand side of a production rule is associ-
ated with a set of terminal symbols called the terminal set of the left-hand
side. We also designate that each right-hand side of a production rule is
associated with a set of terminal symbols called the terminal set of the
right-hand side. If a right-hand side has a terminal symbol to right of the
dot then this terminal symbol is an element of the terminal set for this
right-hand side. Such a right-hand side is called a leaf. For right-hand
sides which are not leaves the terminal sets are initially empty. The initial
terminal sets for right-hand sides with non empty terminal sets follows.

left hand side initial terminal set righthandside
·S {a} ·aS

a ·S {a} a ·aSBC
a ·B {b} a ·b
b ·B {b} b ·b
c ·C {c} c · c
b ·C {c} b · c

6.2.2 Connecting the right-hand sides
The essential point to note in this context is that the left-hand side of a production rule
may be a substring of the right-hand side of a production rule. Let us note for example
that the left-hand side of the production rule: a·B →a·b is a substring of the right-hand
side of the production rule a·S →a·BC. From this it follows that whenever the string
a·BC is substituted into a sentential form, it is possible that the rule a·B →a·b may
be subsequently applied. However, in general it may be true for a given grammar that
there exists more than one left-hand side of a production rule which is a substring of a
given right-hand side of a production rule. In this case the right-hand side is connected
to the longest left-hand side which is a substring of the particular right-hand side. If

20

there exist more than one “longest” left-hand side then a left-hand side is chosen based
one its relative position in the grammar definition. The connected right-hand sides for
our example grammar are:

production rule connected left hand side
a·S →a·aSBC a·S

a·S →a·BC a·B

Before it is verified if a left-hand side is a substring of a right-hand size the dot is
migrated to the right until there is not a terminal symbol to the right of the dot. By
this rule the right-hand side of the production rule a·S →a·aSBC connects to its own
left-hand side in our example grammar.

6.2.3 Computing subsequent terminal sets
Using the following procedure, the terminals sets for all all right hands sides and left-
hand sides in the grammar is computed.

After applying the algorithm above on our example grammar, the terminal sets for
our right-hand sides become are

left-hand side terminal set right-hand side
·S {a} ·aS

a ·S {a} a ·aSBC
a ·S {b} a ·BC
a ·B {b} a ·b
b ·B {b} b ·b
c ·C {c} c · c
b ·C {c} b · c

The terminal set of a left-hand side is defined as the union of the terminal sets of
the non leaf right-hand sides.

6.2.4 Compute the selection sets for the right-hand sides
After applying the procedure described in section 6.2.3 the terminal set of a right-
hand side is called the selection set of that right-hand side. For deterministic dotted
grammars it holds that all selection sets for a particular left-hand side must be disjoint.
If, for a particular left-hand side, a selection set is the empty set then the corresponding
right-hand side is designated the default right-hand side for this left-hand side. The
default right hand is applied when no other right hand can be applied. If for a particular
left-hand side more than one selection set is empty (or if the selection sets of the right-
hand sides are not disjoint) then the grammar is not a deterministic dotted grammar.
By the preceding, the selection sets for our example grammar become:

21

left hand side selection set righthandside
·S {a} ·aS

a ·S {a} a ·aSBC
a ·S {b} a ·BC

BC ·B {a,b,c} ·BBC
a ·B {b} a ·b
b ·B {b} b ·b
c ·C {c} c · c

C.CB {a,b,c} CBC·
BC ·C {a,b,c} ·BCC
b ·CB {a,b,c} bBC·
b ·C {c} b · c

6.3 Selecting a production rule for rewriting
In a previous paragraph the two main problems for a parsers were identified as:

1. deciding at which point in the current sentential form rewriting should take place

2. selecting a “proper” production rule with which to rewrite the current sentential
form

We now want to be a bit more specific on the nature of the second problem.
We divide the problem of selecting a production rule into:

1. the selection of a left-hand side which is a substring of the current sentential form

2. choosing a right-hand side with which to rewrite the current sentential form

6.3.1 Selecting a left-hand side
Let G = (N,T,S,P) be a dotted grammar. Let Z be the set of sentential forms of G. Let
L = {ω1 ·Aω2|ω1 ·Aω2 → ω3 ·ω4 ∈ P} be the set of left-hand sides of the production
rules P.

The left-hand side selection strategy LSS for a deterministic dotted grammar is
defined as a one to one function from Z to L.

A definition of a left-hand side selection strategy is formulated using the notion of
candidate left-hand sides for a sentential form z ∈ Z.

For the set C of candidate left-hand sides for a sentential form ω the following
conditions must hold:

• The left-hand side of all production rules c ∈C are substrings of ω .

• All c ∈ C have a left-hand side of the same length and no x element of C has a
left-hand side of greater length than the left-hand side of c.

From the candidate set for a sentential form the value of LSS(ω) is deduced as follows:

1. If C is the empty set
This represents a parser error. LSS(ω) = unde f ined

22

2. If C contains but one element c
LSS(ω) = c.

3. If C contains more than one element
Define a disambiguation rule (like the order in which the rules are specified)
which selects one element c of C as the left-hand side for the current ω . LSS(ω)=
c. We will use the order of the production rules as the disambiguation rule.

4. For completeness we define that LSS(·) = unde f ined.

6.3.2 Selecting a right-hand side
The selection set for a right-hand side ωc. ·Bωd of a production rule ωa ·Aωb → ωc. ·
Bωd of a dotted grammar G is defined as:

• SelectionSet(ωc. ·Bωd) = {B} if B ∈ T .

• SelectionSet(ωc. ·Bωd) = SelectionSet(LSS(ωc. ·Bωd)) if B ∈ Nand LSS(ωc. ·
Bωd) is defined.

• If LSS(ωc ·Bωd) is undefined and ωc ·Bωd ̸= . then we consider the following:
If the left-hand side ωa ·Aωb has more than one right-hand side for which LSS(ωc ·
Bωd) is undefined then SelectionSet(ωc ·Bωd) is undefined. When ωa ·Aωb →
ωc ·Bωd is the only production rule for which LSS(ωc ·Bωd) is undefined we call
ωa ·Aωb → ωc ·Bωd the default production rule and we define SelectionSet(ωc ·
Bωd)as all t ∈ T such that t is not an element of SelectionSet(ri) (1 ≤ i ≤ k)and
the set of right-hand sides of ωa ·Aωb is defined as: {r1,r2, ...,rk}.

23

Chapter 7

LL(1) grammars and LR(1)
grammars as subsets of
deterministic dotted grammars

7.1 Introduction
Now we’ll show that LL(1) and LR(1) grammars are special case deterministic dotted
grammars. Since all the properties of these grammar classes are contained within the
parse table for these grammar classes, we only have to show that deterministic dotted
grammars can mimic all derivations allowed by LL(1) and LR(1) parse tables respec-
tively.

7.2 LL(1) grammars as deterministic dotted grammars
This section will show that LL(1) grammars, are deterministic dotted grammars. An
LL(1) grammar G = (N, T, S, P) is a context free grammar for which an LL(1) parse
table can be constructed. An LL(1) parse table M is a function from N ×T to P. A
sketch of the LL(1) parsing algorithm follow (taken from ref 16).

Input: A string ω and a LL(1) parsing table M for a grammar G.

Output: true if ω ∈ L(G) and false otherwise .

Method: Initially the contents of the parser stack is $S with S on the top of the stack. $
is a distinguished end of input marker. The input string is of the form ω$. The LL(1)
parsing algorithm operates as follows :

set ip to point to the first symbol of ω$.
repeat
Let x be the top stack symbol and a the symbol pointed to by ip;

if x is a terminal or $ then
if x = a then

pop x from the stack and advance ip

24

else
return false;

else
if M(x,a) = x → y1,y2, ...,yk then
begin

pop x from the stack
push yk,yk−1, ...,y1 so that y1 is the symbol at the top of the stack

end
else

return false;
until x = $

A deterministic dotted grammar which allows the same derivations as LL(1) gram-
mars is easily constructed as follows:

When A → β is a production rule for an LL(1) grammar, then ·A → ·β is the corre-
sponding production rule for an equivalent deterministic dotted grammar. if M(A,a) =
X → β then a ∈ SelectionSet(β) for the left-hand side ·A. By inspection it is clear that
dotted grammar defined is this manner will generate the same derivation sequences as
the corresponding LL(1) grammar.

7.3 LR(1) grammars as deterministic dotted grammars
In this section it will be sketched how deterministic dotted grammars can be con-
structed to generate the same derivations as LR grammars. A context free grammar
G = (N,T,S,P) is an LR grammar when it is possible to construct an LR parsing ta-
ble for G. An LR parsing table is actually two functions called the action and goto
functions respectively. The action function maps a special nonterminal called a state
symbol si and a terminal symbol a j to one of the following for values.

action(si,a j) =

1. shift si, where si is a state

2. reduce by a production rule A → β

3. accept

4. error

The goto function maps a state and a nonterminal to a state symbol. Sentential forms
of LR parsers take the form: so,X1,s1,X2,s2, ...,Xi,si where sx represents a state and
Xyrepresents a grammar symbol. The LR parsing algorithm may be summarized by the
following algorithm. (taken from ref. 16)

Input: A string ω and action and goto functions for a LR grammar G

Output: true if ω ∈ L(G) and false otherwise.

Method: Initially the contents of the parser stack is the initial state s0. The input
string is of the form ω$. $ is a distinguished end of input marker. The LR(1) parsing
algorithm operates as follows.

25

set ip to point to the first symbol of ω$.
repeat

Let s be the state on top of the stack and a the symbol pointed to by ip
if action(s,a) = shift s′ then
begin

push a
push s′

advance ip
end else if action(s,a) = reduceA → β then
begin

pop 2∗ |β | symbolsof the stack
s is the state symbol uncovered after the previous step
push A push goto(s′,A)

end
else if action(s,a) = accept

return true ;
else

return f alse ;
until true = f alse;

A deterministic dotted grammar G = (N ∪N′ ∪E ∪E ′,T,S,P′) can be designed to
mimic the derivations of a LR grammars G’ = G′ = (N,T,s0,P). N′ represents the set
of state symbols used in LR parsers, E and E’ are nonterminals used for erasing (or
popping) symbols and P′ represents the productions of G used to mimic derivations of
LR grammars. s0is the start symbol of G′ is corresponds with the initial state of the LR
parser.

• If action(s,a) = shift(s′) then add the following production rule to P′ :·s → .as′

where a ∈ SelectionSet(·as)

• If action(s,a) is reduce A → β then add the following set production rules to P′:
·s → s.E{|β |}E ′s′A and ·s′A → A.s′′

where a ∈ SelectionSet(s.E{|β |}E ′s′A); s′′ = goto(s′A). The symbols E and E ′

are special nonterminals called the eraser symbols. The production rules for the
symbol E have the form:
·EE ′ → ·
together with the following set of production rules:
n1s1 ·E → ·
n1s2 ·E → ·
...
n1si ·E → ·
n2s1 ·E → ·
n2s2 ·E → ·
...
n2si ·E → ·
...
n js1 ·E → ·
n js2 ·E → ·
...
n j si ·E → · where nx ∈ Nandsy ∈ N′.

26

• If action(s,a) = accept then add the following rule to P′:
·s → ·.

• If action(s,a) = error then add no production rules to P′.

27

Chapter 8

The TINY parser generator

8.1 Introduction
The TINY parser generator (Tiny Is Not Yacc) is a straightforward implementation
of the idea of a parser generator for dotted grammars. (This implementation does
not include recording grammars in the current version.) The TINY is implemented in
C++ and generates table driven parsers in C++. In this section this program will be
introduced by means of two grammars.

8.2 Language definition files
The general structure of a language definition file follows:

grammar <grammar name>
{
terminals
// A list of terminal symbols
nonterminals
// a list of nonterminal symbols
start <nonterminal>
error <nonterminal>
type <C++ type name>
principles
// a set of dotted production rules
}

Each grammar has a grammar name denoted by <grammar name> in the above. The
TINY generates a C++ class with this name which implements the grammars. Each
grammar designates one nonterminal as its start symbol. The nonterminal designated
as the exception symbol is made to be the current symbol (the symbol to the right of the
dot) when any syntax error occurs. Using this symbol one can define how the parser
acts on unexpected input. The TINY refers to production rules a principles.

C++ comments are also viewed as comments in interaction definition files.
A syntax error can be detected in one of the following situations.

28

1. A terminal symbol is the symbol to the right of the dot in a sentential form while
this symbol is not the lookahead symbol.

2. There exists no left-hand side which is a substring of the current sentential form.

3. There exists a left-hand side which is a substring of the current sentential form
however none of the right-hand sides of this left-hand side is applicable.

8.3 An Example
This example introduces a grammar which when submitted to the TINY will generate
a C++ program which will accept the language anbncn(n > 0). Parsers generated by
the TINY consume an input symbol whenever a terminal symbol is to the right of the
dot.

// A dotted grammar for AnBnCn
grammar AnBnCn
{
terminals

a b c
nonterminals

S B C SyntaxError
exception SyntaxError
start S
type int
principles

.S : .a S
;

a.S : a. a S B C
| a. B C
;

a.B : a .b ;
b.B : b .b ;
B C.B : .B B C ;
C .C B : C B C. ;
B C.C : .B C C ;
b.C B : b B C. ;
c.C : c .c ;
b.C : b .c ;
.SyntaxError : . {% cout << "Syntax error" << endl; %};

}
source
{%
void AnBnCn::getToken(TINY_Symbol<int> &s)
{

char c;
cin >> c;
s.attr = 0;
if (c == ’a’ || c == ’A’)

s.id = AnBnCn::a;

29

else if (c == ’b’ || c == ’B’)
s.id = AnBnCn::b;

else if (c == ’c’ || c == ’C’)
s.id = AnBnCn::c;

else
s.id = 0; // an error

}
%}

If the above example is placed in the file “anbncn.t” the following command will yield
the C++ source and header files which correspond with this example.

tiny anbncn.t

By adding a main program defined as follows a complete working parser is obtained.

#include <iostream.h>
#include "anbncn.t.h"

void main()
{

AnBnCn parser;
parser.parse(0);

}

8.4 Semantic actions
The control program generator allows production rules to be annotated by semantic
actions.

Three types of semantic rules are distinguished in the TINY.

1. Left-hand side selection rules

2. Right-hand side selection rules

3. post rewriting rules

A production rule A.B.C : E.F ; may be annotated by semantic actions as in the follow-
ing:

A.BC {% expr1 %} : {% expr2 %} E.F{% statements %} ;

expr1: the left-hand side selection rule; This expression determines when the parser
will rewrite with a the production rules. When the left-hand side selection rule
is omitted the default left-hand side selection strategy is used.

expr2: the right-hand side selection rule. This expression determines when a right-
hand side is selected. When this expression is omitted the right-hand side selec-
tion strategy (base on selection sets) is used.

statements: the post rewriting rules. These rules allow sematic actions to be per-
formed after rewriting has taken place.

In the TINY these semantic actions are blocks of C++ code.

30

Chapter 9

Simulating Turing machines
with deterministic dotted
grammars

9.1 Introduction
In this chapter we’ll show how to simulate arbitrary Turing machines with deterministic
dotted grammars. We’ll see that the dot does not restrict the languages generated by
dotted grammars.

9.2 Recursively enumerable languages
The purpose of this section is to show that the dot in production rules of dotted gram-
mars does not restrict the languages generated by dotted grammars. To show that the
set of recursively enumerable languages are generated by dotted grammars this section
shows how to simulate Turing machines using these grammars.

Turing programs are represented as a finite non empty set of Turing instructions of
the form: (Qo,So,Qn,Qn,Sn,d).

• Qo represents the current Turing machine state

• So represents the symbol at the current tape position

• Qn represents the next machine state

• Sn represents the next symbol for the current tape location

• d ∈ {L,R,O} represents the direction of movement for the head of the Turing
machine.

For the Turing machine M the following holds.

1. M has i states Q1, ...,Qi

2. M has j alphabet symbols S1, ...,S j

31

3. The blank symbol is represented by B

4. The initial string on the tape is ω

For G the following holds:

1. T = {B,s1,s2, ...,s j} where s1, ...,s j correspond to the symbols S1, ...,S j of M.

2. $N = {s,q1,q2, ...,q1} where q1, ...,qi correspond to the states Q1, ...,Qi of M.

3. S = s

4. The productions rules of G are generated by the following procedure:

• Add the production rule ·s→ Bx ·Q1yB, where Q1 is the start state of M and
x is a tape symbol and y is one or more Turing symbols such that ω = xy.
In the following sx represents the current tape symbol. The new tape sym-
bol is represented by sy.
The current and next Turing machine state are represented by qx and qy re-
spectively. The symbol to the right of the current tape symbol is represented
by t.

• For each Turing machine instruction (Qx,Sx,Qy,Sy,R) which moves the
head to the right we add a production rule of the form: sx · qxt → syt · qy
where Qy is not a final state of M and t is not the B. For a Turing machine
instruction (Qx,B,Qy,Sy,R) we add the production of the form: B · qx →
syB ·qyB instead of the production rule specified above.

• For each Turing machine instruction (Qx,Sx,Qy,Sy,L) which moves the
head to the left we add a production rule of the form: sx · qx → ·qysy
where Qy is not a final state of M. For a Turing machine instruction
(Qx,B,Qy,Sy,L) we add the production of the form: B · qx → B · qysy in-
stead of the production rule specified above.

• For each Turing machine instruction Qx,Sx,Qy,Sy0) which doesn’t move
the head we add a production rule of the form : sx ·qx → sy ·qywhere qy is
not a final state of M.

• For each Turing machine instruction (Qx,Sx,Qy,Sy,d) where Qy is a final
state of M we add a production of the form: sx ·qx → sy·.

• No more production rules are added to G.

The existence of an equivalent dotted grammar for any Turing machine program
provides the necesary evidence to support that dotted grammars generate the set of
recursively enumerable languages.

By inspecting the production rules of the dotted grammars allows us to note that
the production rules used to simulate Turing machines have the form:

1. ·s → Bx ·Q1yB

2. sx ·qxt → syt ·qy

3. B ·qx → sy ·BqyB

4. sx ·qx → ·qysy

32

5. B ·qx → B ·qysy

6. sx ·qx → sy·These rules are only used on transitions into final states.

7. sx ·qx → sy ·qy

The meaning of the symbols used in the rules above is given in the section where the
Turing machines are simulated by dotted grammars. Dotted grammars having produc-
tion rules of the above forms are said to be in the Turing normal form. At this point we
take time to note that no length decreasing production rules (with the sole exception
of transitions into a final state) are used in the mapping of Turing instructions to the
instructions of dotted grammars.

We also note that the dotted production rules which simulate Turing machines are
suffixed and prefixed by a string of blanks. No length reducing production rules (out-
side of transitions into a final state) are needed because blank symbols are used to
indicate which parts of sentential forms are not a part of the sentence accepted.

By removing the dot from the production rules of a dotted grammar G in the Tur-
ing normal form, a phrase structure grammar G′ is obtained which also generates L(G).
This becomes evident when we consider that sentential forms of grammars in the Tur-
ing normal form only contain one nonterminal. This single nonterminal must be rewrit-
ten to obtain the following sentential form.
Since this single nonterminal represents the state of the Turing machines (which always
appears to the right of the dot) phrase structure grammars and dotted grammars in the
Turing normal form generate exactly the same derivations.

33

Chapter 10

Multi-dot Grammars

10.1 Introduction
Dotted grammars as introduced in the previous chapters, use a dot in sentential forms
of these grammars to identify the location at which rewriting must take place. In this
chapter we will allow for more than one dot in sentential form of dotted grammars. The
grammars thus obtained we call multi-dot grammars (MDG).

10.2 Definition
A multi-dot grammar is a 6 tuple N,T,R,C,S,P where:

• T is a finite set of terminal symbols

• N is a finite set of nonterminal symbols

• R is a finite set of receptor symbols

• C is a set of compound symbols of the form :
[ω1 ·ω2]
where ω1,ω2 are strings over (N ∪T ∪R∪C)*.

• S ∈ N is a distinguished nonterminal called the start symbol.

• P is a set of rewriting rules p called production rules of the form:
ω1 ·Aω2 → ω3 ·ω4
where A ∈ (N ∪R∪C) while ω1,ω2,ω3,ω4 ∈ N ∪T ∪R∪C∪{·, [,]}*.

An element of the set N ∪T ∪R∪C will be denoted by Σ. Thus Σ represents the set of
all grammar symbols.

A string AB·CDE is said to be reducible by a multi-dot grammar G=(N,T,R,C,S,P)
if and only if there exists at least one p ∈ P of the form: B ·CD → F · G where
A,B,C,D,R,F,G are strings over(Σ∪{·, [,],})∗ andC ∈ (N ∪E ∪C).

34

10.3 Rewriting with multi-dot grammars

10.3.1 BNF definition of sentential forms
A sentential form of a multi-dot grammarG=(N,T,R,C,S,P) is defined in this section.
Terminal symbols are written in capital letters or between single quotes. The empty
string is denoted byε .

sententialForm: symbolList ’.’ symbolList
symbolList: symbolList symbol

symbolList:ε
symbol:TERMINAL
symbol:NONTERMINAL
symbol: RECEPTOR
symbol:[sententialForm]

10.3.2 The reduce function for multi-dot grammars
Rewriting for a multi-dot grammarG = (N,T,R,C,S,P) will be defined by a function
called REDUCE. Let F represent the set of sentential forms of G then the REDUCE
function is a function from F to F defined as follows:

1. REDUCE(ab · cde) = abc ·de if c ∈ T .

2. REDUCE(ab · cde) = a f ·ge whereb · cd → f ·g ∈ P and
c ∈ (N ∪C).
REDUCE(ab · cde) = ab · cde where b · cd → f ·g /∈ Pand c ∈ (N ∪C).

3. REDUCE(ab · cde) = λ < c · cd > [ab · cde](f · g)where b · cd → f · g ∈ P and
c∪R. REDUCE(ab · cde) = ab · cde where b · cd → f ·g /∈ P and c ∈ R. The λ

expression λ < b · cd > [ab · cde](f ·g) is understood as the substitution of f ·g
for b · cd at all possible locations in the sentential form ab · cde.

4. In all other cases REDUCE(ab · cde) = a′b′ · c′d′e) where the following corre-
spondence exists between ab · cde and a′b′ · c′d′e′.
Let abcde = x1,x2, ...,xk where |abcde| = k, and each xi(1 ≤ i ≤ k). Then
a′b′ · c′d′e = x′1,x

′
2, ...,x

′
k where the following holds for x′i:

(a) x′i = xi if xi ∈ (N ∪T ∪R).

(b) x′i = REDUCE(ω1 ·ω2) if xi = [ω1 ·ω2].

Reducing sentential forms as defined under point 2 corresponds to rewriting as defined
in Chomsky’s phrase structure grammars. Thus rewriting takes place at one location
in the sentential form. Reducing sentential forms as defined under point 3 corresponds
to rewriting as defined in Church’s λ calculus. Thus a string s1 is replaced by a string
s2 at all location s1 occurs in the sentential form. Reducing sentential forms as defined
under point 4 corresponds to rewriting as defined in Lindenmayer’s L-systems. Thus
in one rewriting step all possible production rules are applied. A sentential form f is
said to be in normal form for a multi-dot grammar G if and only if REDUCE(f) = f .
A normal form is derived from the start symbol of a multi-dot grammar as a finite
sequence ω1,ω2, ...,ωn defined as:

ω1 = .S

35

ωi = BiCi.DiEiFi

ωi+1 = REDUCE(ωi) ωi ̸= ωi+1

ωn = ωi+1 when REDUCE(ωi) = ωi = ωi+1.

Sentences and languages (as defined for phrase structure grammars) may be viewed as
special cases of normal forms as defined for multi-dot grammars.

36

Chapter 11

Conclusion

This paper introduced the dotted grammar formalisms. Also recording grammars were
introduced in this paper. It was shown that a class of deterministic dotted grammars
allowed table driven parsers to defined for grammars which are a super set of LL(1)
and LR(1) grammars. Deterministic dotted grammars are shown to be able to simu-
late deterministic Turing machines which implies that deterministic dotted grammars
generate the set of recursively enumerable languages.

37

Bibliography

[1] R. Book [1973] "On the structure of context sensitive grammars". International
Journal of Computer Sciences Vol 2, No. 2. pages 129 - 138.

[2] R. Book [1973] edited by A. Aho "Currents in the theory of computing" chapter
1. Prentice-Hall, Inc.

[3] S. Ginsburg, S. A. Greibach [1966] "Mappings which preserve context sensitive
languages" Information and Control 9, 563-582 .

[4] D. Grune, C. Jacobs [1990] "Parsing Techniques". Ellis Horwood Limited.

[5] D. Harel [1989] "Algoritmiek" Academic Service.

[6] S.-Y Kuroda [1964] "Classes of Languages and Linear-Bounded Automata", In-
formation and Control 7, 207-223.

[7] J. Loeckx [1970] "Parsing for general phrase structure grammars". Information
and control 16, 443-464.

[8] G. Matthews [1964] "A note on asymmetry in phrase structure grammars", Infor-
mation and control 7, 360-365.

[9] T. A. Sudkamp [1991] "Languages and Machines" Addison-Wesley.

[10] D. Ullman , J. Hopcroft [1969] "Formal languages and their relation to automata".
Addison-Wesley.

[11] R. Uzgalis, J. Cleaveland [1977] "Grammars for Programming Languages" Else-
vier Computer Science Library.

[12] V.J. Rayward-Smith [1988] "Inleiding in de theorie van formele talen" Academic
Service.

[13] Robert Sedgewick [1988] "Algorithms" Addison-Wesley.

[14] S. Dik, J. Kooij, [1991], "Algemene taal wetenschap", Uitgeverij het spectrum

[15] F. McCabe, [1992], "Logic and Objects", Prentice Hall International (UK) Ltd

[16] A. Aho, R.Sethi, J. Ullman, [1986], "COMPILERS Principles, Techniques and
tools", Addison-Wesley.

[17] P. Brown, [1981], "Writing Interactive Compilers and Interpreters", John Wiley
& Sons

38

[18] V.J. Rayward-Smith, [1985], "Inleiding in de berekenbaarheidstheorie", Aca-
demic Service

[19] J. van Eijck, E. Thijsse, [1989], Logica voor alfa’s en informatici,Academic Ser-
vice

[20] C.A. Koster and various co-authors, [1992], "1992/1992", University of Nijmegen
Dept. Informatics (The Netherlands).

[21] Kent Beck, [1994], "Patterns and Software development", Dr. Dobbs Journal

[22] M.T. Rosetta [1994] "ROSETTA Compositional Translation", Kluwer Academic
Publishers

[23] Samuel Guttenplan [1986] "The languages of logic", Blackwell Publishers

[24] James Allen [1995] "Natural Language Understanding" The Ben-
jamin/Cummings Publishing Company, Inc.

[25] Arie Sturm en Fred Weerman [1983] "Generatieve Syntaxis", Martinus Ni-
jhoff/Leiden

[26] H. van Riemsdijk and Edwin Williams [1986] "Introduction to the theory of gram-
mar", The Massachusetts Institute of Technology.

[27] J. Glenn Brookshear [1989] "Formal Languages, Automata, and Complexity",
The Benjamin/Cummings Publishing Company, Inc.

[28] R. Sommerhalder/S.C. van Westrhenen [1987] "Introduction to the theory of
Computability of Programs, machines, effectiveness and feasibility", Technische
Universiteit Delft

[29] R. Plasmeijer, M van Eekelen [1993] "Functional Programming and Parallel
Graph Rewriting", Addison-Wesley Publishing Company.

39

